[35] G. N. Stacey and O. W. Merten, “Host Cells and Cell Banking,” in Viral Vectors for
Gene Therapy: Methods and Protocols, vol. 737, O. W. Merten and M. AlRubeai
Eds. Methods in Molecular Biology, 2011, pp. 45–88.
[36] K. M. Hehir et al., “Molecular characterization of replication-competent variants of
adenovirus vectors and genome modifications to prevent their occurrence,” J. Virol.,
vol. 70, no. 12, pp. 8459–8467, Dec. 1996, doi: 10.1128/jvi.70.12.8459-8467.1996
[37] F. J. Fallaux et al., “New helper cells and matched early region 1-deleted adenovirus
vectors prevent generation of replication-competent adenoviruses,” Hum. Gene
Therapy, vol. 9, no. 13, pp. 1909–1917, Sep. 1998, doi: 10.1089/hum.1998.9.13-1909
[38] S. Wu et al., “A single dose of an adenovirus-vectored vaccine provides protection
against SARS-CoV-2 challenge,” Nat. Commun., vol. 11, no. 1, p. 4081, Aug. 2020,
doi: 10.1038/s41467-020-17972-1
[39] J. Vellinga et al., “Challenges in manufacturing adenoviral vectors for global
vaccine product deployment,” Hum. Gene Therapy, vol. 25, no. 4, pp. 318–327,
Apr. 2014, doi: 10.1089/hum.2014.007
[40] M. Havenga et al., “Novel replication-incompetent adenoviral B-group vectors:
high vector stability and yield in PER.C6 cells,” J. Gen. Virol., vol. 87,
pp. 2135–2143, Aug. 2006, doi: 10.1099/vir.0.81956-0
[41] N. B. Mercado et al., “Single-shot Ad26 vaccine protects against SARS-CoV-2 in
rhesus macaques,” Nature, vol. 586, no. 7830, pp. 583–588, Oct. 2020, doi: 10.103
8/s41586-020-2607-z
[42] M. Szelechowski, C. Bergeron, D. Gonzalez-Dunia, and B. Klonjkowski, “Production
and purification of non replicative canine adenovirus type 2 derived vectors,” Jove-J.
Visual. Exp., no. 82, Dec. 2013, Art no. e50833, doi: 10.3791/50833
[43] N. van Doremalen et al., “ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2
pneumonia in rhesus macaques,” Nature, vol. 586, no. 7830, pp. 578–582, Oct.
2020, doi: 10.1038/s41586-020-2608-y
[44] A. Kamen and O. Henry, “Development and optimization of an adenovirus pro-
duction process,” J. Gene Med., vol. 6 Suppl 1, pp. S184–S192, Feb. 2004, doi: 10.1
002/jgm.503
[45] S. M. Elahi, C. F. Shen, and R. Gilbert, “Optimization of production of vesicular
stomatitis virus (VSV) in suspension serum-free culture medium at high cell density,”
J. Biotechnol., vol. 289, pp. 144–149, Jan. 2019, doi: 10.1016/j.jbiotec.2018.11.023
[46] E. Petiot, M. Cuperlovic-Culf, C. F. Shen, and A. Kamen, “Influence of HEK293
metabolism on the production of viral vectors and vaccine,” Vaccine, vol. 33, no.
44, pp. 5974–5981, Nov. 2015, doi: 10.1016/j.vaccine.2015.05.097
[47] H. Hovel, “INFLUENCE OF MEDIUM OSMOLARITY ON VIRUS INFECTED
CELL CULTURES,” Arzneimittel-Forschung, vol. 21, no. 6, pp. 899-&, 1971.
doi://WOS:A1971J712200044.
[48] Y. S. Tsao, R. Condon, E. Schaefer, P. Lio, and Z. Liu, “Development and im-
provement of a serum-free suspension process for the production of recombinant
adenoviral vectors using HEK293 cells,” Cytotechnology, vol. 37, no. 3,
pp. 189–198, 2001, doi: 10.1023/a:1020555310558
[49] H. Kallel and A. A. Kamen, “Large-scale adenovirus and poxvirus-vectored vaccine
manufacturing to enable clinical trials,” J. Biotechnol., vol. 10, no. 5, pp. 741–U124,
May 2015, doi: 10.1002/biot.201400390
[50] L. Z. Xie et al., “Large-scale propagation of a replication-defective adenovirus vector
in stirred-tank bioreactor PER.C6 (TM) cell culture under sparging conditions,”
Biotechnol. Bioeng., vol. 83, no. 1, pp. 45–52, Jul. 2003, doi: 10.1002/bit.10644
[51] K. Yamada, N. Morishita, T. Katsuda, S. Kubo, A. Gotoh, and H. Yamaji, “Adenovirus
vector production using low-multiplicity infection of 293 cells,” Cytotechnology, vol.
59, no. 3, pp. 153–160, Apr. 2009, doi: 10.1007/s10616-009-9208-x
Vectored vaccines
289